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Interaction
Two pathogens co-infecting a common host can either interact positively (facilitation), negatively
(competition) or act independently. A correlative study has suggested that two pathogens of the honey
bee, Nosema ceranae and Deformed wing virus (DWV), interact negatively within a host (Costa et al.,
2011). To test this hypothesis, we sequentially co-infected honey bees with these pathogens in a
reciprocally crossed experimental design. Prior establishment in the host ventriculus by N. ceranae
inhibited DWV while prior infection by DWV did not impact N. ceranae, highlighting an asymmetry in
the competitive interaction between these emerging pathogens.

� 2014 Published by Elsevier Inc.
39
62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81
1. Introduction

Co-infection of a host by multiple pathogens is widespread,
particularly in social insects where transmission of microbes may
be facilitated by the high density of individuals in a colony, high
genetic relatedness between nest mates and frequent social inter-
actions (Schmid-Hempel, 1998). Indeed, multiple pathogen infec-
tions are widely observed in honey bees (Cox-Foster et al., 2007;
Ravoet et al., 2013; Runckel et al., 2011) and interactions between
emerging pathogens have been considered a major cause of global
colony mortality (Cornman et al., 2012; Doublet et al., 2014; Evans
and Schwarz, 2011). Co-infecting pathogens may act indepen-
dently of each other in the host, or interact positively, when one
proliferates due to the presence of the other, or negatively, when
pathogens suppress each other (Cox, 2001). In a recent study,
Costa et al. (2011) observed in host honey bee ventriculi a negative
correlation in pathogen loads between the microsporidian Nosema
ceranae and Deformed wing virus (DWV), two emerging pathogens
associated with bee mortality (Fürst et al., 2014; Higes et al., 2008;
Nazzi et al., 2012). To explore putative competition between these
pathogens in adult honey bee midguts, we performed sequential
experimental oral infections (i.e. one pathogen after the other),
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giving a potential advantage of prior establishment to the first
inoculated pathogen over the second, and compared their perfor-
mance in terms of pathogen load per bee.

2. Material and methods

Five colonies of honey bees were used as a source of pupae, and
bees were mixed in cages across treatments. Worker honey bees
that emerged in the laboratory were kept two days in an incubator
with 50% sucrose solution before inoculation. Pathogens were fed
to individual bees in 10 ll of 50% sucrose solution. For each treat-
ment, bees were fed twice, at day 2 and day 6 post emergence, for
sequential feeding of pathogens. Two competition treatments were
tested: Nosema/DWV treatment (N/D), where N. ceranae spores
were fed first (day 2) and DWV second (day 6), and DWV/Nosema
(D/N), where DWV was fed first and N. ceranae spores second (day
2 and day 6 respectively). Following the same nomenclature, four
treatments with only one pathogen were used as controls: Con-
trol/Nosema (C/N), Nosema/Control (N/C), Control/DWV (C/D),
and DWV/Control (D/C). Additionally, a double control treatment
(C/C) was included, where bees were fed twice with a control solu-
tion. During the experiment, bees were maintained in metal cages,
placed in an incubator at 30 �C ± 1 �C and 50% relative humidity,
and fed with 50% sucrose solution ad libitum, as recommended
by Williams et al. (2013). All treatments were run in triplicate,
with 16 bees per cage.
virus is
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Fig. 1. Average estimated number of N. ceranae spores (±sem) per honey bee
midgut from the seven treatments. Abbreviations of the treatments are on the
x-axis in chronological order of infection at day 2 and day 6 post-eclosion:
C = control, N = N. ceranae, D = DWV. As an example, treatment C/N means that bees
first received a sugar solution then, four days later, a sugar solution with N. ceranae
spores.
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Spores of N. ceranae used for inoculations were obtained from
artificial propagations in adult honey bees kept in the laboratory.
Spores were isolated following a triangulation method (Fries
et al., 2013) and counted using a Fuchs-Rosenthal hemocytometer.
Each worker bee was inoculated with 105 spores. DWV was
obtained from symptomatic bees crushed in cold 0.5 M PBS (pH
8), filtered through cotton wool, and subsequently centrifuged at
4 �C for 15 min at 15,000g, before carefully extracting the superna-
tant and diluting in PBS (Bailey and Ball, 1991). This extract was
then injected into uninfected pupae for propagation. After 6 days,
injected pupae were crushed and viral particles extracted as above.
Extracts were placed into clean aliquots and checked for the pres-
ence of DWV and co-propagation of other viruses using qRT-PCR
(see Supplementary Table S1). Each inoculum contained 107 gen-
ome equivalents of DWV, with a non-significant amount of Chronic
bee paralysis virus (CBPV < 0.001%) contamination. Control inocu-
lum was prepared from uninfected pupae and was devoid of viral
contamination.

Nine days after the second pathogen feeding and before the
onset of significant mortality, five bees were randomly sampled
per treatment per replicate (except for the third N/C replicate with
only 2 surviving hosts). Sampled bees were flash-killed in liquid
nitrogen and conserved in RNAlater ICE (Ambion, USA) at �20 �C.
Total RNA from individual midguts was extracted using an RNeasy
Mini Kit in a Qiacube robot (Qiagen). Pathogens and reference gene
RP49 were quantified by qRT-PCR, using standard 10-fold dilutions
of cloned fragments for absolute quantification (see Supplementary
Table S1). Relative quantification of DWV was calculated by the
ratio of DWV to RP49 copy numbers. The potential presence of
other co-occurring pathogens in experimental samples was exam-
ined using RT-qPCR and reverse-transcriptase multiplex-ligation
probe dependent amplification (RT-MLPA; De Smet et al. (2012)).
Amplified fragments from RT-MLPA were visualized on a QIAxcel
(Qiagen) with an acceptance threshold of 0.1 relative fluorescence
units. Six bees with unsuccessful N. ceranae infections (three from
N/C and three from N/D treatments) and two bees with N. ceranae
contamination (C/D treatment) were discarded from the analysis,
as well as one bee from the D/N treatment with unsuccessful viral
infection. To estimate N. ceranae spore number in bees, a linear
regression between qPCR Cq values and actual spore numbers in a
bee midgut was calculated using five randomly selected bees
(y = �11.773x + 109.35; R2 = 0.95).
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Fig. 2. Average relative quantification of DWV (±sem) per honey bee midgut from
the seven treatments (reference gene: RP49). Abbreviations of the treatments are
on the x-axis in chronological order. C = control, N = N. ceranae, D = DWV (see also
legend to Fig. 1).
3. Results and discussion

Inoculated bees developed infections (Figs. S1–S3). Sequential
inoculation of worker honey bees by N. ceranae and DWV revealed
an asymmetric competitive interaction between the two patho-
gens. Inoculation by DWV had no impact on the load of N. ceranae
spores in a honey bee’s midgut, both when the virus was inocu-
lated before (Figs. 1 and S1; Mann–Whitney with 2-tailed Monte-
Carlo correction U = 94; p = 0.653) or after the microsporidian
(U = 46.5; p = 0.621). Conversely, prior establishment of N. ceranae
had a significant negative impact on the load of DWV (Fig. 2;
U = 41; p = 0.047; see Supplementary Figs. S2 and S3). Though N.
ceranae also seemed to inhibit DWV titres when the microsporidi-
an was inoculated after the virus, the effect was not significant
(U = 64; p = 0.079). No other viral pathogen was associated with
experimental treatments (see Supplementary Table S2).

Competitive suppression of DWV by N. ceranae may be due to
direct competition of pathogens for host resources or space in the
midgut. Indeed, N. ceranae induces a degeneration of the epithelial
gut cells and reduces their capacity to self-repair (Dussaubat et al.,
2012). This suggests that biological cell functions are compromised
by N. ceranae, and microsporidian-infected cells might not be
Please cite this article in press as: Doublet, V., et al. Within-host competition am
asymmetric and to the disadvantage of the virus. J. Invertebr. Pathol. (2014), h
suitable for RNA virus replication, or that N. ceranae infection limits
the number of host cells available for viral infection, thereby limit-
ing viral load. Conversely, viral infection does not seem to reduce
the susceptibility or suitability of host cells for microsporidian
infection.

Alternatively, suppression of DWV by N. ceranae might be med-
iated by immune priming of the host. Although, N. ceranae has
been shown to induce immune suppression in honey bees
(Antúnez et al., 2009; Aufauvre et al., 2014; Chaimanee et al.,
2012), recent transcriptomic and proteomic studies demonstrate
that N. ceranae infection is associated with oxidative stress in the
ventriculus, which may constitute the main cellular immune
response of the honey bee midgut to microsporidia, and potentially
responsible of the cellular damage of the gut epithelium
(Dussaubat et al., 2012; Vidau et al., 2014). In the mosquito Aedes
ong the honey bees pathogens Nosema ceranae and Deformed wing virus is
ttp://dx.doi.org/10.1016/j.jip.2014.10.007
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aegypti, the endosymbiotic bacteria Wolbachia has been shown to
activate the host innate immune system by inducing the produc-
tion of reactive oxygen species (ROS) following oxidative stress,
thereby controlling dengue virus (Pan et al., 2012). It is therefore
possible that antiviral defenses were activated in bees infected
by N. ceranae, but this remains speculative as virus control by path-
ogenic fungi in insects has not yet been observed.

Here we fed two pathogens sequentially with an interval of four
days, enough time for the first inoculated pathogen to establish in
the host midgut. The N. ceranae life cycle takes four days (Gisder
et al., 2011) and first intracellular spore germination starts mini-
mally 3 days post-infection (Higes et al., 2007). Oral infection of
honey bees by DWV also leads to rapid establishment of the path-
ogen in the midgut two days post-infection (Möckel et al., 2011).
Four days seem sufficient for both virus and microsporidia to col-
onize the midgut epithelial cells, and benefit from a competitive
advantage as observed among other host-pathogen systems
(Hoverman et al., 2013; Jackson et al., 2006; Thomas et al., 2003)
and described in community ecology as a priority effect (Alford
and Wilbur, 1985). Here, N. ceranae seems to exhibit a priority
effect over DWV.

Competitive suppression might be expected to have a negative
impact on the dynamics of the virus. However, DWV is transmitted
via multiple routes, horizontally (orally and by the parasitic mite
vector Varroa destructor) and vertically (de Miranda and
Genersch, 2010). These multiple transmission routes may reduce
the impact of competition with N. ceranae on viral dynamics. Nev-
ertheless, in the absence of Varroa mites (e.g. after winter or in iso-
lated honey bee populations), our results suggest that the presence
of N. ceranae in honey bee colonies may reduce viral proliferation
in honey bee ventriculi.
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